
The Roofline Model

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Auto-tuning and the Roofline Model
Sam Williams, David Patterson, Kathy Yelick, Jim Demmel,

Andrew Waterman, Rich Vuduc, Lenny Oliker, John Shalf, Jonathan Carter, …
samw@eecs.berkeley.edu

P A R A L L E L C O M P U T I N G L A B O R A T O R Y

Auto-tuning the Sparse Linear Algebra Motif

Clovertown

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

fits
 w

ith
in

sn
oo

p f
ilte

r

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

Barcelona
peak DP

w/out SIMD

w/out ILP

mul/add imbalance

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

Cell Blade

1

2

1/16

flop:DRAM byte ratio

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

w/out SIMD

peak DP

w/out ILP

w/out FMA

w/ou
t N

UMA
un

ali
gn

ed
 D

MA

at
ta

in
ab

le
 G

flo
p/

s

Victoria Falls

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

25% FP

peak DP

12% FP

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

A x y

Original performance

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

HypervisorOS

Arch.

Productivity

Layer

Efficiency

Layer C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

P
ow

er
/P

er
fo

rm
an

ce

Auto-tuners

Applications

Auto-tuning the Structured Grid Motif
Reference
Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, "Lattice Boltzmann Simulation
Optimization on Leading Multicore Platforms", International Parallel & Distributed Processing Symposium
(IPDPS) (to appear), 2008.
Best Paper, Application Track

Lattice-Boltzmann Magneto-hydrodynamics (LBMHD)
•Simulates plasma turbulence via LBM
•Couples CFD with Maxwell’s Equations
•Thus it requires:

27pt Momentum distribution
15pt Magnetic distribution
7 macroscopic quantities
(density, momentum, magnetic field)

•Two phases to the code:
collision() advances the grid one time step
stream() handles the boundary conditions (periodic for benchmark)

•Each lattice update requires ~1300 flops and ~1200 bytes of data
•flop:byte ~ 1.0(ideal), ~0.7(cache-based machines)

Auto-tuning LBMHD
•Auto-tuning dramatically improved performance on the Opteron (4x).
•Became important when the problem could no longer be mapped with
Niagara2’s 4MB pages.
•Although prefetching showed little benefit, SIMD and streaming stores
helped significantly.
•Cell was not auto-tuned, and only collision() was implemented.

Using the Roofline Model
•Out-of-the-box code touches
 too many arrays per loop
 iteration.
•Cache bypass improves the
 arithmetic intensity
•Dataset is too large for the
 snoop filter to ever work.
•Clearly, no room for
 improvement on Clovertown,
 Barcelona, or Cell.

momentum distribution

14

4

13

16

5

8

9

21

12

+Y

2

25

1

3

24

23

22

26

0

18

6

17

19

7

10

11

20

15

+Z

+X

magnetic distribution

14

13

16

21

12

25

24

23

22

26

18

17

19

20

15

+Y

+Z

+X

macroscopic variables

+Y

+Z

+X

Auto-tuned performance

Cell Blade

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

w/out FMA

peak DP

w/out ILP

w/out SIMD

w/ou
t N

UMA
un

ali
gn

ed
 D

MA

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

Barcelona
peak DP

w/out SIMD

w/out ILP

mul/add imbalance

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

Victoria Falls

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

25% FP

peak DP

12% FP

w/ou
t S

W
 pr

efe
tch

w/ou
t N

UMA

Clovertown

1

2

1/16

flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

fits
 w

ith
in

sn
oo

p f
ilte

r

Reference
Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, James Demmel,
"Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms",
Supercomputing (SC), 2007.

What’s a Sparse Matrix?
•Like a dense matrix,
•but most of the entries are 0.0
•Huge performance advantage in
 storing/operating on the nonzeros
•CSR is the standard representation
•Requires significant meta data

Sparse Matrix Vector Multiplication (SpMV)
•Evaluate y=Ax
•A is a sparse matrix
•x & y are dense vectors
•No ILP, DLP, and very low flop:byte ratio (<0.166)

Auto-tuning SpMV
•Register, Cache, and TLB blocking result in hierarchical data structures.
•Exhaustive search for optimal prefetch distance.
•Memory traffic minimization heuristic improves flop:byte ratio (<0.25)
•Dramatic increases in performance across all machines
•SIMDization of little/no value.
•Benefits are matrix dependent.

Using the Roofline Model
•Plot only the Dense matrix
 stored in sparse format
•Clearly heavily memory-
 bound on all computers
•Register blocking amortizes
 meta data
•Prefetching/NUMA often
 essential in delivering
 higher bandwidth

Original performance
Auto-tuned performance

Reference
Samuel Williams, Andrew Waterman, David Patterson, “Roofline: An Insightful Multicore Performance Model”,
(submitted to) Communications of the ACM, 2008

Introduction
•Use bound and bottleneck analysis to distill the key components of
 architecture and performance (computation, communication, locality)
 into a visually-intuitive performance model.
•Allow programmers to model,
 predict, and analyze a kernel’s
 performance.
•Here we restrict the model to
 memory-intensive SPMD
 floating-point kernels.

Naïve Roofline Model
•Well known formalism.
•Base on microbenchmarks
 and optimization manuals.
•Combines communication,
 computation, and locality
 into a single figure.

In-core Parallelism
•Current architectures achieve
 high performance through many
 forms of in-core parallelism.
•A lack of exploitation of any form
 of in-core parallelism will
 degrade performance.
•Delineate performance levels
 = in-core ceilings

Instruction Mix
•Large numbers of integer instructions
 can limit FP performance.

Memory Bandwidth
•High memory bandwidth comes
 from hiding latency and
 exploiting parallelism.
•HW prefetchers hide latency for
 unit-stride access patterns.
•SW prefetchers supplement this.
•Multisocket SMPs require
 careful placement of data
 (NUMA optimizations).
•A lack of any of these will
 degrade memory bandwidth
 = bandwidth ceilings

Locality
•Think 3C’s of caches.
•All kernels have compulsory
 cache misses.
•Caches are finite
 = capacity misses
•Caches aren’t fully associative
 = conflict misses
•If software doesn’t handle these,
 arithmetic intensity will degrade
 = arithmetic intensity walls

Future Work
•Performance counters will dramatically
 enhance the Roofline Model.
•Expanding the model to other communication and computation metrics

2

1/8
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/4 1/2 1 2 4 8 16
1

peak SP

mul / add imbalance

w/out ILP

pe
ak

 st
rea

m ba
nd

widt
h

w/out SIMD

2

1/8
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/4 1/2 1 2 4 8 16
1

peak single precision flops

pe
ak

 st
rea

m ba
nd

widt
h

2

1/8
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/4 1/2 1 2 4 8 16
1

mul / add imbalance

w/out ILP

w/out SIMD

peak SP

pe
ak

 st
rea

m ba
nd

widt
h

w/ou
t S

W pr
efe

tch
ing

w/ou
t N

UMA op
tim

iza
tio

ns

w/ou
t u

nit
 st

rid
e s

tre
am

s

2

1/8
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/4 1/2 1 2 4 8 16
1

mul / add imbalance

w/out ILP

w/out SIMD

w/ou
t S

W pr
efe

tch
ing

w/ou
t N

UMA op
tim

iza
tio

ns

w/ou
t u

nit
 st

rid
e s

tre
am

s

peak SP

pe
ak

 st
rea

m ba
nd

widt
h

O
nly C

om
pulsory M

isses

C
om

pulsory + C
onflict

C
om

pulsory + C
apacity

All 3C
’s

What is Auto-tuning?
Basic Idea
•Provides performance portability across the breadth and evolution of
 multicore architectures.
•There are too many complex architectures with too many possible code
 transformations to hand optimize every kernel for every architecture.
•An optimization on one machine may slow another machine down.
•Need a general, automated solution.

Code Generators
•Kernel-specific
•Perl scripts generate 1000’s of code variations for various optimizations:

• NUMA-Aware collocates data with the threads processing it
• Array Padding avoids conflicts in the L1/L2
• Register Blocking in the sparse motif, data structure is

hierarchically blocked for locality
• Cache Blocking minimizes cache misses and memory traffic
• Vectorization avoids thrashing the TLB
• Unrolling/DLP compensates for poor compilers
• SW Prefetching attempts to hide L2 and DRAM latency
• SIMDization compensates for poor compilers, and

streaming stores minimize memory traffic

Auto-tuners
•Search over all possible code variants for best performance.
•Often, an exhaustive search is intractable.

• The trend is to use heuristics to guide the search.
• The future is to use performance models to guide the search.

Isn’t this just compilation? No.
•Auto-tuners are dataset aware, where compilers are oblivious.
•Auto-tuners are motif-oriented, not code-oriented.
•Auto-tuners can change the data structures, loop structures or
 even the algorithm at runtime to achieve better performance

Where does this fit in the ParLab ?
ParLab
•Multi- and manycore is the only foreseeable solution to improve
 performance or reduce power.
•Vertically and horizontally integrated lab focused on manycore.
•Within each layer are multiple research groups.
•Within each group are multiple projects.
•Two groups (analysis and verification) dive through all layers

My Work
•Fits into two different, but related layers:

• The Roofline model is a template for analyzing performance
• Auto-tuning computational motifs is buried in the Efficiency Layer.

•Uses existing multicore SMPs as proxies for next generation multicore
 computers
 e.g. Victoria Falls with 128 threads is like a 128 core machine

